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It is shown how symmetry may be used in the context of the self-consistent field theory of the 
localised molecular orbital of the chemical bond. The results are (1) a reduction of the order of the 
secular determinant of the localised molecular orbital: (2) the classifying of the localised and canonical 
molecular orbitals under the various symmetry groups of the bonds and the molecule: (3) a clari- 
fication of the various types of symmetry group which are involved with the localised molecular 
orbitals. 

Es wird gezeigt, wie Symmetrieeigenschaften im Zusammenhang mit der SCF-Theorie lokali- 
sierter Molektilorbitale benutzt werden kann. Die Ergebnisse sind: 1. eine Reduktion der Ordnung 
der S~ikulardeterminante des lokalisierten Molekfilorbitals; 2. die Klassifizierung der lokalisierten 
und kanonischen Molekfilorbitale nach den verschiedenen Symmetriegruppen der Bindungen und 
des Molektils; 3. eine Kliirung der verschiedenen Typen yon Symmetriegruppen, die im Zusammen- 
hang mit lokalisierten Molekiilorbitalen stehen. 

When we deal with the localised molecular orbitMs (1.m.o.) which describe 
the chemical bond [11 , it is not clear just what role symmetry plays in this type 
of theory. It is well known that the 1.m.o.s transform as a reducible representation 
of the molecule's point group and it is less easy to deal with the reducible 
representations than with the irreducible ones. In addition, the nature of the 
relevant symmetry group is not obvious because 1.m.o.s are confined in large 
measure to one part  of a molecule and so it may seem that the symmetry group 
should be that of this part  of the molecule. On the other hand, no 1.m.o. is ever 
perfectly localised in one region of a molecule because it will generally have small 
but finite amplitude in all parts of the molecule. 

In thinking about  chemical bonds and 1.m.o.s, we may either begin with an 
isolated bond and then expand our viewpoint to encompass the whole molecule 
or we may begin with the whole molecule and then narrow down our attention 
to the bond in question. The latter method is simpler and is generally used in 
this paper. 

1. Introduction 

The first step in applying symmetry to any molecule is to select the point 
group of the molecule in the usual way [2]. This group is now referred to as the 
"molecule group", G, and is of order g. If we are dealing with a closed shell ground 
state of a 2n electron molecule, then we have immediately 
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where H is the hamiltonian of the molecule, 7 ~ is the many electron wavefunction 
of the Hartree-Fock approximation, R is any operation of the molecule group, 
the vertical bars denote a determinant and the q5 are the familiar canonical m.o.s. 
In Eq. (1), we have labeled the m.o.s 1 ...n. We may equally use three labels, one 
for the irreducible representation to which the m.o. belongs (i), one for the row 
of this representation (r) and a third label to distinguish m.o.s which are not 
distinguished by symmetry. This is a common notation and the standard 
sequence is a, i, r. 

The equations which describe the symmetry of the canonical m.o.s are 

di 

R (gair = Z Di(R)~r~ais ( 2 )  
s = l  

together with the basic eigenvalue equation 

f (a ai ~ = e,i(O air (3) 

and the equations which result from the fact that R and F commute 

di di 
R(Fc~,,~,.)= F(Rq3a~,.)= F ~ D~(g),.sc~,m = ~.  D~(R)~sFC~a~ 

s = l  s = l  
a, (4) 

= %  Z Di(R),,r 
S=I 

In these three equations, R is the operator of the molecule group G, and Di(R)r~ 
is the element of the r th row and s th column of the matrix D of the i th irreducible 
representation. 

The secular equation for the 1.m.o.s is 

t--n+ l 

[,Cqi(F,,q - eiiSpq)] = 0 p = 1 - (t - n + 1) (5) 
q=l  

where the cql are coefficients of the expansion of the 1.m.o. over suitable basis 
functions earlier written [-3] as )~1 .-.Z(,-,+,). In the earlier work [3] we chose 
these basis functions by guessing the final form of the eigenfunctions as well as 
possible and using these basis functions u , . . . u ( t _ , + , )  to form the secular 
determinant as in Fig. 1. Full details are given in the earlier work [-3]. 

The two nuclei of the chosen bond establish a unique axis in the molecule. 
This is the "bond axis". We select from all the operations of the molecule group 
those operations which leave unchanged the two nuclei of the bond. Should we 
be dealing with a homopolar  bond, A-A, we must extent this selection to include 
those operations which exchange the two nuclei. 

Two possibilities arise now. If the bond in question is unique in the molecule, 
such as the C-C1 bond of methyl chloride, the selected operations will be the 
whole molecule group G. If there are other bonds in the molecule which are 
equivalent to the bond in question under the operations of the molecule group, 
such as the C - H  bonds of methyl chloride, then the selected operations will be a 
subgroup, H, of the molecule group. The order of this subgroup is h. We refer to 
this group as the "bond-molecule,  group (Table 1) to stress that this group is con- 
cerned with both the bond and the whole molecule. If we identify each bond in 
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u~ u~ u~ u~... 
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0.5 

0.5 

small 0.5 ... 

Fig. 1. The F matrix for the localised m.o.s before the use of symmetry. The quantity 6 is a small 
quantity in general 

Table 1. The bond-molecule groups 

C 1 C2 C 3 C 4 C 5 C 6 

Clh 

C2o C3v C4v Cs~ C6v 
C2h Cab C4h Csh C6h 

Sz(C3 S4 S6 
D 2 93 De D 5 D 6 

D2d D3a D4a Dsd D6d 

D2h D3h D4h D5h D6h 

C~v 

D~h 

Taking the 37 groups in this table, removing the ten groups C5, Csv , Csh , Ds, D5h , D4d , Dsd , D6d , Cce v 
and D| and adding the groups T, Ta, O, O h and T h gives the familiar 32 point groups which occur 
in crystals. In a few molecules, other symmetries such as D7h may occur. 

the molecule with a label, e say, then we have H ~ for a bond  molecule g roup  and 
S ~ for its operations.  The irreducible representat ions of  H ~ are either one 
dimensional  or two dimensional�9 

Look ing  now at the forms of  the m.o.s (not l.m.o.s) of the bond-molecule  
group,  it is clear that  we get the same m.o.s when we use the bond-molecule  
g roup  as when we use the molecule group.  This must  be so if we use Eq. (3) to 
calculate the m.o.s since this equat ion uniquely determines the m.o.s regardless 
of any manipula t ion  of symmetry  groups. Some care is required with any 
degenerate levels but  suitable choice of  the functions spanning a degenerate 
level will make  the above statement  a valid one. 

The formal  equat ions for the use of symmetry  with the bond-molecule  g roup  
are straightforward.  The equat ion which refer to the m a n y  electron wave function 
are essentially as before (Eq. (1)) while the equat ions which refer to the individual 
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Table 2. Examples of bond-molecule groups and bond groups 

Molecule Molecule Bond Bond-molecule Bond 
group group group 

H 2 Doo h H - H  D~h D~h 
HF C.v  H - F  C ~  C.v 

HzO C2v 0 H Coo~ C ~  
NH 3 C3. N - H  C~ C ~  

CH 4 T d C - H  C3v Co3v 
C 2 H  4 O2h C - H  Cih Co~ 
C6H 6 D6h C - H  C2~ C~o~ 
PC1 s D3h P-C1 (axial) Ca. C~o 

PC15 D3h P-C]  (equatorial) C2v Coo v 
BF 3 D3h B-F  C2~ C~o~ 
H202 C2 O H C 1 C ~  
C2H 6 D3h C - H  Clh Co~ v 
C2H 6 D3h C- C D3h DoD h 

Table 3. Correlation tables for the bond groups C~, and D~a 

HeteronucIear case C~ ,  

C| C6o Csv C4v C3v Czv C6 C5 C4 C3 C2 Cs 

al al at at  at ai  a a a a a a' 
e t e~ et  e e bt  + b2 e~ e a e e 2b a' + a" 

Homonuclear case Do~h 

Dmh D6h Dsh D4h D3h D2h D3d D2a $6 X 4 

a~g aaa a] aao a'l a~ a~o a i a o a 
a2. a2. a'~ a2. a~ b l .  a2. b 2 a. b 
el .  e l .  e~ e. e' bz,,+b3, e. e e. e 
eta el o e~ e o e" b2 a+b3g e o e e o e 

D,~h D6 9 5 D 4 D 3 D 2 C6h Csh C4h C3h Czh 

alo a t a 1 a I a 1 a a o a' ag a' a o 
a2 u a 2 a 2 a 2 a 2 b 1 a u a" a. a" a. or b. 
e l .  e 1 e 1 e e b2 +ba el .  e~ e. e' 2b. or a . + b .  
elg e i e i e e b 2 + b  3 eig e'~ eg e" 2bg or ag+bg 

Dooh C6~ C5~ C4. C3o C2~ C 6 C.~ Ca Ca C2 C~ C i 

alo a 1 a 1 a 1 a 1 a I a a a a a d a 0 

a2u a a a 1 aa a t a i or b2 a a a a a or b a" or a'2 au 
ex, el et e e a l  + h i  et et e e 2b 2a' 2a, 

or or or 
b~+b2  a + b  a ' + a "  

eio e~ el e e a 2 + b 2 e~ e I e e 2b 2a" 2a o 
o r  o r  o r  

b l + b 2  a + b  a ' + a "  

The C~v table was worked from first principles as were the D6h , Dsh , and D4h components of the 
Doo h table. The remainder of the latter table was constructed from the correlation tables of Ref. [4] 
via the D6h , D5h , and D4h components. The choices which arise in the Do~h table arise from different 
selections of axes and the correct choice will be obvious from context in a given problem. 
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m.o.s are 
dj 

S~(Pbjs= ~ Bg(S')Jpbj~ FC~bjs=ejbf)bj ~ (6) 
t = l  

together with the analogue of Eq. (4). 
Some relevant examples are given in Table 2. In working with the molecule 

group and its subgroups, we will need the correlation tables between a group and 
its subgroups. These are available in the standard texts [-4] apart from those 
for C~v and D~h which are given in Table 3. 

2. The l.m.o.s and the Molecule Group 

The 1.m.o.s are now given three labels. The first (k) is a serial label denoting 
the position of the bond in the molecule, the second (w) being a distinguishing 
label between the equivalent bonds of one set and the third (p) distinguishing 
between the members of a degenerate set. An example is the molecule of Fig. 2a. 

The 1.m.o.s are related to the canonical m.o.s by an orthogonal transform 
given by 

p = ~ A  ~b = p A  - 1  = p , ~  (7) 

where p is the row vector of the 1.m.o.s, 4} is the row vector of the canonical 
m.o.s and A is an orthogonal (more generally, unitary) n x n matrix. In com- 
ponents, we have 

IAkwp ~ 2 rl~ d k w p  ,,  A b J  s ~bjs~bjs 4',,js = Y. (S) k~,kwpZJ-kwp �9 
bjs kwp 

It is well known that this transformation does not change the total wave function 
of the molecule [-1, 3]. 

A B 

1 2 3 4 5 C 

C ~ 5 , 1 ,  ~Zs, 1,x~ ~5,1,y 
B / 

1 / / ~ 4 ,  1 /22, 
/ 

A ~ 7 - ~ ; - ~ C \  

1/222 
. . . . . . . . . . . . . . .  

a 

P1 Q~/Q4 P1 / Q 1  

C D A B C D 

/ \ \  
P2 Q2 P3 Pz Q2 
b c 

Fig. 2 
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The type of symmetry which occurs with the 1.m.o.s is different from that of 
the canonical m.o.s. The former is a generalised type of permutational symmetry 
which is based on the physical assumption that equivalent bonds have 1.m.o.s 
which are equivalent. By "equivalent" is meant differing only on their positions 
in space and not in the essentials of their functional form. 

This type of permutational symmetry (more correctly perhaps pseudo- 
permutational symmetry) is important in the development of this work. In these 
permutational matrices, unity occurs once in each row and once in each column. 
Such matrices are orthogonal matrices. It is generally true that not all possible 
permutations between equivalent bonds are physically possible under the usual 
symmetry operations (e.g., the six C - H  bonds of benzene) although exceptionally 
the molecule group and the permutation group are isomorphous (methane, Td, 
is the permutation group on four objects). It follows that we are not concerned 
with the permutation groups themselves. 

These matrices are block diagonal, each block clearly corresponding to a set 
of equivalent bonds in the molecule. An important property of such matrices is 
that one may strike out certain rows and columns in such a way as to remove 
the entire block and still have a permutational matrix. It is n o t  generally possible 
to strike out the s a m e  rows and columns from all the matrices and still have a 
set of permutational matrices when dealing with the molecule group. 

The above remarks apply to single bonds. If two dimensional n bonds are 
involved, the theory is readily extended to deal with such an example. 

We may now write 

R#kwp E t'~kwp " = "~kw'p'~kw'p'  (9) 
w' p" 

where I~kwp is the matrix element. Notice that we cannot assume p = p' as a few ~'-~kw" p' 

simple examples show. 

3. The l.m.o.s and the Bond-Molecule Group 

Suppose that we are concerned with the bond #1. We select from the 
g matrices of the molecule group those matrices which correspond to the 
operations S 1 of the bond-molecule group H I. There will be h I such matrices 
which form a representation of the bond-molecule group. The 1.m.o.s form a 
basis for this representation in the usual way. The h 1 matrices differ from the 
entire set of g matrices in that the matrix element corresponding to the bond/~1 
is particularly simple. If #1 is a a bond, then the top left element of the 
permutation matrices is + 1 for a l l  the matrices of the bond-molecule group. 
That is, all the h 1 matrices have the partial structure 

S : ( t q  . . .  # . )  = ( t q  . . .  i t . )  

+ i  0 0 . . . ] .  
(lo) 

This result is only true for the bond-molecule group and not for the molecule group. 



22 D. Peters: 

It  follows that the 1.m.o./q belongs to an irreducible representation of the 
bond-molecule group/-/~. We have then 

dj 

S~p~j~= ~ B j (S I ) j~#~ .  (11) 
t = l  

Equations such as (10) and (11) will clearly hold for all the bonds in the molecule. 
If  a doubly degenerate rc bond is being dealt with, then the theory is extended in 
a straightforward way. Notice that all the functions p~ . . .p ,  will occur in each 
case but that different selections of the set of g matrices will be needed for the 
different bonds and bond-molecule groups. 

Now we focus attention on the bond kh again. The h ~ matrices of Eq. (10) 
are already partly reduced but we may if we wish reduce them completely. It  is 
convenient to do this in two steps. First, we reduce each block under the "block 
group" which consists of #1 plus the block under discussion. Thus in the example 
of Fig. 2b, we have C2v and C4v block groups present. If  we reduce the blocks in 
this way, we must of course replace the set of functions spanning each block 
with symmetrised functions as usual. That  is, we replace the set of functions 
Pkwp with the set of functions ~kjs where now the second and third labels denote 
the s th row of t h e f  h irreducible of the block group. Second, we reduce all the blocks 
under the one bond-molecule group. This bond-molecule group will clearly be 
the block group of lowest order or, in some cases, a group of lower order than 
any of the block groups. As an example of these two steps, we take the molecule 
of Fig. 2b and first reduce the P block under Czv and the Q block under C4~. 
Then both are classified under the bond-molecule group C2~. A contrasting 
example is the molecule of Fig. 2c where we have both a C2~ and a C3~ block 
group while the bond-molecule group is C~. 

4. The Transformation between the l.m.o.s and the Canonical m.o.s 

At this point we settle the question of the extent to which the matrix elements 
of the A matrix are determined by symmetry alone. We consider the reverse 
transformation between p and ~ of Eq. (7) 

dp = p A  . (7) 

Suppose that we are given the p and we then reduce this set of functions under 
the molecule group in the usual way to generate a set of functions v,i,. That  is 

v = p B  (12) 

where v is the n dimensional row of the symmetry adapted functions vai ,. The 
matrix B is determined by symmetry alone. To convert the v to the q~ requires 
the solution of the secular equation and we think of this as a transformation with 
the orthogonal  matrix C where 

~b = vC  (13) 

and air air 
C b j  s = t ~ i j t ~ r s C ~ i  r (14) 

and the elements of C are otherwise arbitrary as far as symmetry is concerned. 
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The complete transformation is then 

= !aBC p = $ C B .  (15) 

As an example of this process, consider the methyl chloride molecule with the 
four 1.m.o.s written as #ccl, #cn, #cn,, ~cn',. The B and C matrices are then 

B = 

1 0 0 0 7 

/ 0 1/3 0 2/3 

0 1/3 1/2 - 1 / 6 [  

0 1/3 - 1 / 2  - 1 / 6 J  

C = 

where c = cos(7) and s = sin(7 ) and 7 is arbitrary. 

cs 1 --S C 

1 

1 

(16) 

5. l.m.o.s of  the Truncated Molecule and the Bond Groups 

The formal theory of the symmetry of the 1.m.o.s which has been developed 
so far is complete in itself but it must be taken further is symmetry is to be of 
practical value in computing 1.m.o.s. In particular, we must be able to truncate 
the secular equations and the secular determinant of Sect. 1 in ways suggested by 
chemical experience. We know, for example, that the properties of a given bond 
in a large molecule will be affected only slightly by the nature of a remote bond 
or group of atoms. 

Suppose that we are again concerned with the bond whose 1.m.o. is 1'1- We 
truncate the molecule by removing an atom or atoms and we clearly remove the 
atomic orbitals which are centred on the deleted atoms from the basis set of 
orbitals. In general, the symmetry of the bond-molecule group will change when 
atoms are deleted although cases do arise in which there is no such change in 
symmetry. Indeed, to change the symmetry an atom must be removed from an 
off-axis position as in the case of atom P in examples such as the molecule of 
Fig. 3a. If there is a set of several off-axis atoms which are equivalent, it is clear 

j P l  . 

A--B--C 
\ 

P2 
b 

P 
/ 

A B--C 
a 

PI[ /Q1  

A--B--C--D 
I \ 
Pz Q2 

C 

P t \  fP1  

C--A--A C 
/ \ 

P2 P2 
d 

Fig. 3 
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that we must remove all of them at the same time. A simple example of an 
increase of symmetry resulting from the removal of a set of atoms is the removal 
of atoms P1 and P2 from the molecule of Fig. 3b. 

As the symmetry of the molecule is increased by truncation of the molecule, 
operations must be added to the bond-molecule group. If the bond is C ~ ,  then as 
we truncate the molecule we can add only rotations (C,) and reflections in a place 
which contains the bond axis (o-~). If the bond is D~h, we may add the same 
operations as before plus two fold rotations about the axis perpendicular to the 
bond axis together with ah, the inversion i and the rotary reflections (S,). Some 
of these operations are interconnected and they cannot be added in arbitrary 
sets. 

We now have the extended bond group. The matrices which we had before 
the truncation are dealt with by striking out the appropriate rows and columns. 
We strike out the appropriate functions from the row of 1.m.o.s together with 
the contributions of the deleted atoms' atomic orbitals to the remaining 1.m.o.s. 
We also write down by inspection the new matrices for the new operations which 
are now present in the extended bond group. We now have a set of permutation 
matrices which represent the extended bond group and all of these matrices have 
the partial structure 

0 0 0 7 
0 0 . . . . . . . . .  | .  

J ~ 
The extension of this process to such cases as the molecules of Figs. 3c and 3d 
is straightforward. 

Table 4. Matrices of the irreducible representations of the bond groups 

Heteronuclear bond C~, 
Bond E 2 C~ av 

~r or cr* a 1 1 1 1 

Homonuclear bond Do~h 
Bond E 2C~ a~ i S~ C~ 

a alg 1 1 1 1 1 1 
a* a2, 1 1 1 - 1 - 1 --1 

7~ e~u [ 10 ~] [ ~ : - - ~ t  [ ~ : - - ~  [ -10 _~] [ C~s~ --Sc~] [--~:: 

[:: sj [::: :::] [o 
S2a 

- -  $ 2 ~  C2~] 

The symbols c, and s~ denote cosine(~) and sine(c 0 respectively. 
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Returning now to the truncation of the molecule, we continue this until there 
remains only the bond in question and its two nuclei. The bond group is thus 
C~v or D~h. Throughout  the truncation we deal with a chain of subgroups each 
of which is contained in a larger group. The chain begins with the bond-molecule 
group and ends with the bond group Coov or D~h. When we have only the two 
nuclei of the bond #1 remaining then we have only one function left in the row 
of 1.m.o.s. The corresponding matrices will be 1 x 1. They correspond to a row 
of the C~,  or Do~h character tables (Table 4). If a two dimensional n bond is being 
discussed, then the theory is extended in a natural way. 

As an example of this truncation process, consider the methyl chloride 
molecule again. Taking the C-C1 bond as #1, the bond-molecule group is C3~ 
and the bond group C ~ .  We must use the top line of the C ~  character table. 
Or, were we interested in the rc bond of methyl acetylene, we must end the 
truncation with the el ,  matrices of the Dmh table. 

6. Solution of the Secular Equations 

We now show how symmetry simplifies the solution of the secular equation 
of the 1.m.o.s. Before symmetry is considered, the matrix of Fig. 1 contains no 
zeros although matrix elements between functions which are far apart  in space 
will clearly be small. It is convenient to divide this section into three subsections. 
In the first subsection, we examine the solution of the 2 x 2 secular determinant 
where the bond is perfectly localised and the operators which make up the 
F operator  are confined to the two atoms forming the bond. In the second 
subsection, we expand the F operator  until the entire molecule is represented in 
this operator while at the same time the secular determinant remains a 2 • 2 one. 
This is the stage in which the chemical ideas of polarisation and induction are 
incorporated into the theory and given a rigorous definition. In the third sub- 
section, we allow the delocalisation of the bond #1 say over the entire molecule. 
This is the quantitative formulation of the chemical idea of hyperconjugation. 

a) Operator and Orbital Localised 

Here we suppose that we are solving a 2 x 2 secular determinant with a 
fully symmetrical operator. There are some questions about  the detailed 
formulation of this operator  but we leave these aside for the moment.  If we are 
concerned with a o- bond, the matrix of the F operator over the basis functions 
u 1 and u~' is then [3] 

F1 1. 
Fl,l = (Ul lFlUl) etc. (17) 

1. F . , .  

We naturally choose the two basis functions to transform under Coov o r  D~h 
just as we would in dealing with a diatomic molecule. We will emerge at the end 
with the al or el m.o.s of the C~v case or with the alo, alu, elu or elg m.o.s of the 
Doo h case. 
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b) Extended Operator, Localised Function 

At the end of the previous section, we were left with a diagonalised 2 x 2 
matrix. We now allow the F operator  to expand until it encompasses the 
entire molecule. Physically, this means that the two electrons of the bond/~1 can 
see the attraction and repulsion of all the nuclei and electrons of distant atoms. 
The F operator  now has the symmetry of the extended molecule but the electron 
is confined to the vicinity of the chosen bond #1 and this situation is just that of 
an external static electric field with the symmetry of the F operator. All we 
require is that the 1.m.o. #1 transforms as the irreducible representation of the 
bond molecule group H 1. This may require the use of an extended basis set for 
the two atoms of the bond #t .  

c) Extended Operator and Extended Orbital 

In this section we consider the extension of the secular determinant until 
finally the complete #1 is reached. We begin with the two atoms of the bond and 
then add atoms to the molecule and add functions to the row of functions in 
Eq. (10) at the same time as we add the new kt* to the basis of the secular equation. 
We also increase the size of the matrices while reducing the number  of them. 
For  convenience, we may replace the /~* with the set of symmetry adapted 
functions 0* each of which transforms as the s th row of the jth irreducible 
representation of the extended group. Then we may use the familiar theorem 
that the matrix elements of the F operator  will vanish unless both functions 
belong to the same irreducible representation and to the same row of this 
representation. That  is 

U 

U* 

C~ov{ u* 

C,v{ u~ 

C.{ u* 

Fig. 4. An example of the 

U /A* 

Coo v C, v C, 
u* u* u* u* u* u* 

Zero 

Zero 

F matrix over the 1.m.o. after the use of symmetry (AB case) 
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u 

U* 

O~h { u~ 
u~ 

ul 
D"h { u* 

D.{ u* 
u~ 

U U* 

Dc~ h Dnh Dn 

u* u~ u* u~ ~ u* 

Zero 

Zero 

Fig. 5. An example of the F matrix over the 1.m.o. after the use of symmetry (AA case) 

This result will reduce the dimension of the secular determinant in nearly all 
cases. In the general case, the F matrix will take the form shown in Fig. 4 for a 
C~v bond and that shown in Fig. 5 for a D~h bond. The ordering of the blocks 
is the natural order for C~v but is somewhat arbitrary in the D~h case. 

7. Summary and Comments 

To summarise this work, we may say that the following points have been 
established: 

1. The nature of the various symmetry groups with which we are concerned 
in dealing with the 1.m.o.s is established (Table 5). 

Table 5. Summary of the different groups involved with the bonds of a molecule 

Molecule group Bond-molecule groups Bond groups 

1) One group, G, order g, n groups, H ~, order h ~ n groups, all C~v 
operations R operations S ~ or D~h 

2) n occupied m.o.s, either n m.o.s for each bond- one or three 
localised or canonical molecule group m.o.s for each bond 

3) Number of matrices is 9 Number of matrices h" for Number of matrices 
each bond is infinite 

4) All matrices may appear All matrices may appear All matrices 
in permutational or in permutational or fixed once and 
reduced form reduced form for all 

5) Example of methyl chloride Four groups, C3v and C~v for all four 
C3v, 6 th order, operations C s (three times) bonds 
are E, C3, and ~% 
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2. The nature of the relevant reducible and irreducible representations of 
these groups is established. 

3. The nature of the basis functions of these representations is clarified. 
4. The order of the secular determinant is reduced. 
Taken in conjunction with the theory of 1.m.o.s reported earlier [3] this 

work and some other results to be reported later on perturbation methods 
establish a complete theory of the 1.m.o. at the restricted Hart ree-Fock level of 
approximation.  

Extension of this work to deal with subsystems consisting of three or more 
atoms is quite feasible and can be made by inspection given the earlier work. 
Typical situations which will require this extension are the hydrogen bonding 
problem and the general chemical reactivity problem. 

Finally, it should be noted that symmetry is of much greater use in 1.m.o. 
theory where it is almost  always useful for all bonds and not for just a small 
proport ion of cases as is true of the theory of symmetry and canonical m.o.s. 
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